top of page
Search
brontaheran1980

Virtual Dock 3D Exodo Download.17: A Powerful Tool for Computational Drug Discovery



Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field. PMID:22922346




Virtual Dock 3D Exodo Download.17




The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.


Fragment-based drug discovery (FBDD) has caused a revolution in the process of drug discovery and design, with many FBDD leads being developed into clinical trials or approved in the past few years. Compared with traditional high-throughput screening, it displays obvious advantages such as efficiently covering chemical space, achieving higher hit rates, and so forth. In this review, we focus on the most recent developments of FBDD for improving drug discovery, illustrating the process and the importance of FBDD. In particular, the computational strategies applied in the process of FBDD and molecular-docking programs are highlighted elaborately. In most cases, docking is used for predicting the ligand-receptor interaction modes and hit identification by structurebased virtual screening. The successful cases of typical significance and the hits identified most recently are discussed.


Evolution in computer engineering, availability of increasing amounts of data and the development of new and fast docking algorithms and software have led to improved molecular simulations with crucial applications in virtual high-throughput screening and drug discovery. Moreover, analysis of protein-ligand recognition through molecular docking has become a valuable tool in drug design. In this review, we focus on the applicability of molecular docking on a particular class of G protein-coupled receptors: the β-adrenergic receptors, which are relevant targets in clinic for the treatment of asthma and cardiovascular diseases. We describe the binding site in β-adrenergic receptors to understand key factors in ligand recognition along with the proteins activation process. Moreover, we focus on the discovery of new lead compounds that bind the receptors, on the evaluation of virtual screening using the active/ inactive binding site states, and on the structural optimization of known families of binders to improve β-adrenergic affinity. We also discussed strengths and challenges related to the applicability of molecular docking in β-adrenergic receptors. Molecular docking is a valuable technique in computational chemistry to deeply analyze ligand recognition and has led to important breakthroughs in drug discovery and design in the field of β-adrenergic receptors. Copyright Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.


In the last decade, fragment-based drug discovery (FBDD) has evolved from a novel approach in the search of new hits to a valuable alternative to the high-throughput screening (HTS) campaigns of many pharmaceutical companies. The increasing relevance of FBDD in the drug discovery universe has been concomitant with an implementation of the biophysical techniques used for the detection of weak inhibitors, e.g. NMR, X-ray crystallography or surface plasmon resonance (SPR). At the same time, computational approaches have also been progressively incorporated into the FBDD process and nowadays several computational tools are available. These stretch from the filtering of huge chemical databases in order to build fragment-focused libraries comprising compounds with adequate physicochemical properties, to more evolved models based on different in silico methods such as docking, pharmacophore modelling, QSAR and virtual screening. In this paper we will review the parallel evolution and complementarities of biophysical techniques and computational methods, providing some representative examples of drug discovery success stories by using FBDD.


Background Natural products have been an important source of lead compounds for drug discovery. How to find and evaluate bioactive natural products is critical to the achievement of drug/lead discovery from natural products. Methodology We collected 19,7201 natural products structures, reported biological activities and virtual screening results. Principal component analysis was employed to explore the chemical space, and we found that there was a large portion of overlap between natural products and FDA-approved drugs in the chemical space, which indicated that natural products had large quantity of potential lead compounds. We also explored the network properties of natural product-target networks and found that polypharmacology was greatly enriched to those compounds with large degree and high betweenness centrality. In order to make up for a lack of experimental data, high throughput virtual screening was employed. All natural products were docked to 332 target proteins of FDA-approved drugs. The most potential natural products for drug discovery and their indications were predicted based on a docking score-weighted prediction model. Conclusions Analysis of molecular descriptors, distribution in chemical space and biological activities of natural products was conducted in this article. Natural products have vast chemical diversity, good drug-like properties and can interact with multiple cellular target proteins. PMID:23638153


Structure-based drug discovery (SBDD) is becoming an essential tool in assisting fast and cost-efficient lead discovery and optimization. The application of rational, structure-based drug design is proven to be more efficient than the traditional way of drug discovery since it aims to understand the molecular basis of a disease and utilizes the knowledge of the three-dimensional structure of the biological target in the process. In this review, we focus on the principles and applications of Virtual Screening (VS) within the context of SBDD and examine different procedures ranging from the initial stages of the process that include receptor and library pre-processing, to docking, scoring and post-processing of topscoring hits. Recent improvements in structure-based virtual screening (SBVS) efficiency through ensemble docking, induced fit and consensus docking are also discussed. The review highlights advances in the field within the framework of several success studies that have led to nM inhibition directly from VS and provides recent trends in library design as well as discusses limitations of the method. Applications of SBVS in the design of substrates for engineered proteins that enable the discovery of new metabolic and signal transduction pathways and the design of inhibitors of multifunctional proteins are also reviewed. Finally, we contribute two promising VS protocols recently developed by us that aim to increase inhibitor selectivity. In the first protocol, we describe the discovery of micromolar inhibitors through SBVS designed to inhibit the mutant H1047R PI3Kα kinase. Second, we discuss a strategy for the identification of selective binders for the RXRα nuclear receptor. In this protocol, a set of target structures is constructed for ensemble docking based on binding site shape characterization and clustering, aiming to enhance the hit rate of selective inhibitors for the desired protein target through the SBVS process. PMID:25262799


The application of computational tools to drug discovery helps researchers to design and evaluate new drugs swiftly with a reduce economic resources. To discover new potential drugs, computational chemistry incorporates automatization for obtaining biological data such as adsorption, distribution, metabolism, excretion and toxicity (ADMET), as well as drug mechanisms of action. This editorial looks at examples of these computational tools, including docking, molecular dynamics simulation, virtual screening, quantum chemistry, quantitative structural activity relationship, principal component analysis and drug screening workflow systems. The authors then provide their perspectives on the importance of these techniques for drug discovery. Computational tools help researchers to design and discover new drugs for the treatment of several human diseases without side effects, thus allowing for the evaluation of millions of compounds with a reduced cost in both time and economic resources. The problem is that operating each program is difficult; one is required to use several programs and understand each of the properties being tested. In the future, it is possible that a single computer and software program will be capable of evaluating the complete properties (mechanisms of action and ADMET properties) of ligands. It is also possible that after submitting one target, this computer-software will be capable of suggesting potential compounds along with ways to synthesize them, and presenting biological models for testing. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page